Teleconnections of the Southern Oscillation in the Tropical Atlantic Sector in the OSU Coupled Upper Ocean–Atmosphere GCM

1993 ◽  
Vol 6 (3) ◽  
pp. 487-498 ◽  
Author(s):  
Sultan Hameed ◽  
Alan Meinster ◽  
Kenneth R. Sperber
2006 ◽  
Vol 19 (22) ◽  
pp. 5859-5874 ◽  
Author(s):  
Yuko Okumura ◽  
Shang-Ping Xie

Abstract The Atlantic Niño, an equatorial zonal mode akin to the Pacific El Niño–Southern Oscillation (ENSO), is phase-locked to boreal summer when the equatorial easterly winds intensify and the thermocline shoals in the Gulf of Guinea. A suite of satellite and in situ observations reveals a new mode of tropical Atlantic variability that displays many characteristics of the zonal mode but instead peaks in November–December (ND). This new mode is found to be statistically independent from both the Atlantic Niño in the preceding summer and the Pacific ENSO. The origin of this ND zonal mode lies in an overlooked aspect of the seasonal cycle in the equatorial Atlantic. In November the equatorial easterly winds intensify for the second time, increasing upwelling and lifting the thermocline in the Gulf of Guinea. An analysis of high-resolution climatological data shows that these dynamical changes induce a noticeable SST cooling in the central equatorial Atlantic. The shoaling thermocline and increased upwelling enhance the SST sensitivity to surface wind changes, reinvigorating equatorial ocean–atmosphere interaction. The resultant ocean–atmospheric anomalies are organized into patterns that give rise to positive mutual feedback as Bjerknes envisioned for the Pacific ENSO. This ND zonal mode significantly affects interannual rainfall variability in coastal Congo–Angola during its early rainy season. It tends to further evolve into a meridional mode in the following March–April, affecting precipitation in northeast Brazil. Thus it offers potential predictability for climate over the Atlantic sector in early boreal winter, a season for which local ocean–atmosphere variability was otherwise poorly understood.


2007 ◽  
Vol 20 (5) ◽  
pp. 856-870 ◽  
Author(s):  
Lixin Wu ◽  
Feng He ◽  
Zhengyu Liu ◽  
Chun Li

Abstract In this paper, the atmospheric teleconnections of the tropical Atlantic SST variability are investigated in a series of coupled ocean–atmosphere modeling experiments. It is found that the tropical Atlantic climate not only displays an apparent interhemispheric link, but also significantly influences the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). In spring, the tropical Atlantic SST exhibits an interhemispheric seesaw controlled by the wind–evaporation–SST (WES) feedback that subsequently decays through the mediation of the seasonal migration of the ITCZ. Over the North Atlantic, the tropical Atlantic SST can force a significant coupled NAO–dipole SST response in spring that changes to a coupled wave train–horseshoe SST response in the following summer and fall, and a recurrence of the NAO in the next winter. The seasonal changes of the atmospheric response as well as the recurrence of the next winter’s NAO are driven predominantly by the tropical Atlantic SST itself, while the resulting extratropical SST can enhance the atmospheric response, but it is not a necessary bridge of the winter-to-winter NAO persistency. Over the Pacific, the model demonstrates that the north tropical Atlantic (NTA) SST can also organize an interhemispheric SST seesaw in spring in the eastern equatorial Pacific that subsequently evolves into an ENSO-like pattern in the tropical Pacific through mediation of the ITCZ and equatorial coupled ocean–atmosphere feedback.


1991 ◽  
Vol 6 (2) ◽  
pp. 83-97 ◽  
Author(s):  
Kenneth R Sperber ◽  
Sultan Hameed

2014 ◽  
Vol 29 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Dierk Polzin ◽  
Stefan Hastenrath

Resuming earlier research, this study explores rainfall variability in Brazil's Nordeste and underlying circulation mechanisms. The semi-arid northern Nordeste has its short rainy season centered around March-April-May, when temperature maximum, low pressure trough and wind confluence reach their southernmost position. Interannual variability can be understood as departures from the average annual cycle. Based on novel long-term datasets, the present study explores the preferred time scales of variability. In Nordeste rainfall and pertinent circulation indices in the tropical Atlantic sector most prominent are frequencies of 13.2, 9.9 and 5.6 years. Frequency peak of 13.1 years appears also in the record of Southern Oscillation, and of 5.6 years in North Atlantic Oscillation, indicative of causality chain.


2011 ◽  
Vol 24 (7) ◽  
pp. 1931-1949 ◽  
Author(s):  
Ousmane Ndiaye ◽  
M. Neil Ward ◽  
Wassila M. Thiaw

Abstract The ability of several atmosphere-only and coupled ocean–atmosphere general circulation models (AGCMs and CGCMs, respectively) is explored for the prediction of seasonal July–September (JAS) Sahel rainfall. The AGCMs driven with observed sea surface temperature (SST) over the period 1968–2001 confirm the poor ability of such models to represent interannual Sahel rainfall variability. However, using a model output statistics (MOS) approach with the predicted low-level wind field over the tropical Atlantic and western part of West Africa yields good Sahel rainfall skill for all models. Skill is mostly captured in the leading empirical orthogonal function (EOF1), representing large-scale fluctuation in the regional circulation system over the tropical Atlantic. This finding has operational significance for the utility of AGCMs for short lead-time prediction based on persistence of June SST information; however, studies have shown that for longer lead-time forecasts, there is substantial loss of skill, relative to that achieved using the observed JAS SST. The potential of CGCMs is therefore explored for extending the lead time of Sahel rainfall predictions. Some of the models studied, when initialized using April information, show potential to at least match the levels of skill achievable from assuming persistence of April SST. One model [NCEP Climate Forecasting System (CFS)] was found to be particularly promising. Diagnosis of the hindcasts available for the CFS (from lead times up to six months for 1981–2008) suggests that, especially by applying the same MOS approach, skill is achieved through capturing interannual variations in Sahel rainfall (primarily related to El Niño–Southern Oscillation in the period of study), as well as the upward trend in Sahel rainfall that is observed over 1981–2008, which has been accompanied by a relative warming in the North Atlantic compared to the South Atlantic. At lead times up to six months (initialized forecasts in December), skill levels are maintained with the correlation between predicted and observed Sahel rainfall at approximately r = 0.6. While such skill levels at these long lead times are notably higher than previously achieved, further experiments, such as over the same period and with comparable AGCMs, are required for definitive attribution of the advance to the use of a coupled ocean–atmosphere modeling approach. Nonetheless, the detrended skill achieved here by the January–March initializations (r = 0.33) must require an approach that captures the evolution of the key ocean–atmosphere anomalies from boreal winter to boreal summer, and approaches that draw on persistence in ocean conditions have not previously been successful.


2005 ◽  
Vol 18 (11) ◽  
pp. 1652-1672 ◽  
Author(s):  
Bohua Huang ◽  
J. Shukla

Abstract A 110-yr simulation is conducted using a specially designed coupled ocean–atmosphere general circulation model that only allows air–sea interaction over the Atlantic Ocean within 30°S–60°N. Since the influence from the Pacific El Niño–Southern Oscillation (ENSO) over the Atlantic is removed in this run, it provides a better view of the extratropical influences on the tropical air–sea interaction within the Atlantic sector. The model results are compared with the observations that also have their ENSO components subtracted. The model reproduces the two major anomalous patterns of the sea surface temperature (SST) in the southern subtropical Atlantic (SSA) and the northern tropical Atlantic (NTA) Ocean. The SSA pattern is phase locked to the annual cycle. Its enhancement in austral summer is associated with atmospheric disturbances from the South Atlantic during late austral spring. The extratropical atmospheric disturbances induce anomalous trade winds and surface heat fluxes in its northern flank, which generate SST anomalies in the subtropics during austral summer. The forced SST anomalies then change the local sea level pressure and winds, which in turn affect the northward shift of the atmospheric disturbance and cause further SST changes in the deep Tropics during austral fall. The NTA pattern is significant throughout a year. Like the SSA pattern, the NTA pattern in boreal winter–spring is usually associated with the heat flux change caused by extratropical atmospheric disturbances, such as the North Atlantic Oscillation. The SST anomalies then feed back with the tropical atmosphere and expand equatorward. From summer to fall, however, the NTA SST anomalies are likely to persist within the subtropics for more than one season after it is generated. Our model results suggest that this feature is associated with a local feedback between the NTA SST anomalies and the atmospheric subtropical anticyclone from late boreal summer to early winter. The significance of this potential feedback in reality needs to be further examined with more observational evidence.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Zhang ◽  
Feng Jiang ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin ◽  
Axel Timmermann

AbstractThe El Niño-Southern Oscillation (ENSO), the primary driver of year-to-year global climate variability, is known to influence the North Tropical Atlantic (NTA) sea surface temperature (SST), especially during boreal spring season. Focusing on statistical lead-lag relationships, previous studies have proposed that interannual NTA SST variability can also feed back on ENSO in a predictable manner. However, these studies did not properly account for ENSO’s autocorrelation and the fact that the SST in the Atlantic and Pacific, as well as their interaction are seasonally modulated. This can lead to misinterpretations of causality and the spurious identification of Atlantic precursors for ENSO. Revisiting this issue under consideration of seasonality, time-varying ENSO frequency, and greenhouse warming, we demonstrate that the cross-correlation characteristics between NTA SST and ENSO, are consistent with a one-way Pacific to Atlantic forcing, even though the interpretation of lead-lag relationships may suggest otherwise.


2018 ◽  
Vol 31 (24) ◽  
pp. 10123-10139 ◽  
Author(s):  
Chuan-Yang Wang ◽  
Shang-Ping Xie ◽  
Yu Kosaka

El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.


2018 ◽  
Vol 31 (22) ◽  
pp. 9107-9124 ◽  
Author(s):  
Asha K. Jordan ◽  
Anand Gnanadesikan ◽  
Benjamin Zaitchik

North Africa is the world’s largest source of mineral dust, and this dust has potentially significant impacts on precipitation. Yet there is no consensus in published studies regarding the sign or magnitude of dust impacts on rainfall in either the highly climate-sensitive Sahel region of North Africa or the neighboring tropical Atlantic Ocean. Here the Geophysical Fluid Dynamics Laboratory (GFDL) Climate Model 2 (GFDL CM2.0) with Modular Ocean Model, version 4.1 (MOM4.1), run at coarse resolution (CM2Mc) is applied to investigate one poorly characterized aspect of dust–precipitation dynamics: the importance of sea surface temperature (SST) changes in mediating the atmospheric response to dust. Two model experiments were performed: one comparing Dust-On to Dust-Off simulations in the absence of ocean–atmosphere coupling, and the second comparing Dust-On to Dust-Off with the ocean fully coupled. Results indicate that SST changes in the coupled experiment reduce the magnitude of dust impacts on Sahel rainfall and flip the sign of the precipitation response over the nearby ocean. Over the Sahel, CM2Mc simulates a net positive impact of dust on monsoon season rainfall, but ocean–atmosphere coupling in the presence of dust decreases the inflow of water vapor, reducing the amount by which dust enhances rainfall. Over the tropical Atlantic Ocean, dust leads to SST cooling in the coupled experiment, resulting in increased static stability that overrides the warming-induced increase in convection observed in the uncoupled experiment and yields a net negative impact of dust on precipitation. These model results highlight the potential importance of SST changes in dust–precipitation dynamics in North Africa and neighboring regions.


Sign in / Sign up

Export Citation Format

Share Document